Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
نویسندگان
چکیده
Cardiac ischemia decreases complex III activity, cytochrome c content, and respiration through cytochrome oxidase in subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). The reversible blockade of electron transport with amobarbital during ischemia protects mitochondrial respiration and decreases myocardial injury during reperfusion. These findings support that mitochondrial damage occurs during ischemia and contributes to myocardial injury during reperfusion. The current study addressed whether ischemic damage to the electron transport chain (ETC) increased the net production of reactive oxygen species (ROS) from mitochondria. SSM and IFM were isolated from 6-mo-old Fisher 344 rat hearts following 25 min global ischemia or following 40 min of perfusion alone as controls. H(2)O(2) release from SSM and IFM was measured using the amplex red assay. With glutamate as a complex I substrate, the net production of H(2)O(2) was increased by 178 +/- 14% and 179 +/- 17% in SSM and IFM (n = 9), respectively, following ischemia compared with controls (n = 8). With succinate as substrate in the presence of rotenone, H(2)O(2) increased by 272 +/- 22% and 171 +/- 21% in SSM and IFM, respectively, after ischemia. Inhibitors of electron transport were used to assess maximal ROS production. Inhibition of complex I with rotenone increased H(2)O(2) production by 179 +/- 24% and 155 +/- 14% in SSM and IFM, respectively, following ischemia. Ischemia also increased the antimycin A-stimulated production of H(2)O(2) from complex III. Thus ischemic damage to the ETC increased both the capacity and the net production of H(2)O(2) from complex I and complex III and sets the stage for an increase in ROS production during reperfusion as a mechanism of cardiac injury.
منابع مشابه
Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملReactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide.
Mitochondria are an important source of reactive oxygen species (ROS), implicated in ischemia/reperfusion injury. When isolated from ischemic myocardium, mitochondria demonstrate increased ROS production as a result of damage to electron transport complexes. To investigate the mechanisms, we studied effects of hypoxia/reoxygenation on ROS production by isolated energized heart mitochondria. ROS...
متن کاملOpening mitoKATP increases superoxide generation from complex I of the electron transport chain.
Opening the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) increases levels of reactive oxygen species (ROS) in cardiomyocytes. This increase in ROS is necessary for cardioprotection against ischemia-reperfusion injury; however, the mechanism of mitoK(ATP)-dependent stimulation of ROS production is unknown. We examined ROS production in suspensions of isolated rat heart and liver mitocho...
متن کاملProduction of Reactive Oxygen Species by Mitochondria
The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) under pathological conditions including myocardial ischemia and reperfusion. Limitation of electron transport by the inhibitor rotenone immediately before ischemia decreases the production of ROS in cardiac myocytes and reduces damage to mitochondria. We asked if ROS generation by intact mitochondria during t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 294 2 شماره
صفحات -
تاریخ انتشار 2008